
Mathematics/Computer Science Clinic

Final Report for
Community of ODE Educators (CODEE)

Redesigning ODE Toolkit

May 8, 2009

Team Members
Eric Doi (Project Manager)
Steven Ehrlich
Richard Mehlinger
Andres Perez

Advisor
Professor Chris Stone

Liaison
Professor Darryl Yong

Abstract

This document details our redesign and refactoring of ODE Toolkit for the
CODEE 2008-09 Computer Science/Mathematics Clinic. We outline the
project as it stood when we found it, describing the architecture, giving
a description of important classes, and explaining our decision to focus on
refactoring the code. We then detail our work, including summaries of
our new design, major classes, the motivations behind our decisions, doc-
umentation, improvements we made to the code, end results, and other
deliverables.

Contents

Abstract iii

Acknowledgments xi

1 Introduction 1
1.1 Background . 1
1.2 Initial State of ODE Toolkit . 2
1.3 Problem Definition . 2

2 Original Architecture 5
2.1 User Interface . 5

2.1.1 GUI . 6
2.1.2 ODEWorkspace . 6
2.1.3 TabbedGraphPanel . 7
2.1.4 GraphPanel . 7

GraphPanel . 8
ComponentGraphPanel 8
PhaseGraphPanel . 8
MultiGraphPanel . 8
WorkspacePanel . 8

2.1.5 PlotPanel . 8
PlotBox2D . 9
Plot2D . 9
MultiPlot2D . 9

3 Design Improvements 11
3.1 Control (Package) . 11

3.1.1 Main (Class) . 11
3.1.2 Listeners (Package) . 11
3.1.3 Data Representation (Package) 11

vi Contents

PlotState (Package) . 12
Axis (Class) . 14
ODEVar (Class) . 14
ODEVarVector (Class) 14

3.2 User Interface (Package) . 14
3.2.1 TabbedOutputPanel (Class) 14
3.2.2 OutputPanel (Class) 15
3.2.3 GraphPanel (Class) . 15
3.2.4 PlotPanel (Class) . 15

3.3 Drawer (Package) . 15

4 Testing and Results 17
4.1 Testing . 17
4.2 Results . 17

5 Addition Deliverables 19
5.1 Documentation . 19
5.2 Developer Tutorials . 19
5.3 Example Library . 20
5.4 Open Source License . 20
5.5 Trac Wiki . 21

6 Conclusions and Future Work 23
6.1 Completing Implementation of Control 23
6.2 Creating an I/O Package . 23
6.3 Teacher Utilities . 24

A Project Management 25
A.1 First Semester . 25

A.1.1 Initial Setbacks . 25
A.1.2 Initial Optimism . 26

A.2 Second Semester . 26
A.2.1 Initial Design and Refactoring Attempt 26
A.2.2 Design Phase . 27
A.2.3 Refactoring . 27

B Documentation 31
B.1 Package Summaries (Old Architecture) 31

B.1.1 Parser . 31
B.1.2 Solver . 31

Contents vii

B.1.3 Storage (Replaced by DataRepresentation) 31
B.1.4 Util . 32
B.1.5 External Source (Removed by refactoring) 32

B.2 Package Summaries (New Architecture) 32
B.2.1 Control . 32

DataRepresentation 33
B.2.2 Drawer . 35
B.2.3 UI . 35

OutputPanels . 35
B.3 Sequence Diagrams . 38
B.4 Class Diagrams . 46

C Testing Procedure 49

D Developer Tutorial 53
D.1 Getting Started with Eclipse 53
D.2 Main Components . 54
D.3 Miscellaneous . 56

D.3.1 Java Web Start - Digitally Signing the Jar 56
D.3.2 Javadoc . 57
D.3.3 Adding Solvers . 57
D.3.4 Managing the ODE Toolkit Website 58

E Licensing 59

List of Figures

1.1 The ODE Toolkit version Alpha 1.0 user interface 3

2.1 Diagram of the main components in the original architecture
of ODE Toolkit. 6

2.2 Screenshot highlighting the areas of the display controlled
by each UI component. 7

3.1 Diagram of the main components in the original architecture
of ODE Toolkit, color-coded to indicate portions that were
separated in the new design (Figure 3.2). See Appendix B.1
for summaries of packages in the original architecture. . . . 12

3.2 Diagram of the main components in the redesigned archi-
tecture of ODE Toolkit, color-coded to indicate portions that
were separated from the old design (Figure 3.1). See Ap-
pendix B.2 for summaries of the new architecture’s compo-
nents. 13

4.1 Selected benchmark comparison in Mac OS X. The tests were
run on a 2008 Macbook Pro, using the ODE x′ = y, y′ =
−5 sin(x)− y. 18

5.1 Sample ODE file: The Lorenz Attractor 20

A.1 Tasks accomplished in the first semester 28
A.2 Tasks accomplished in the second semester 29

B.1 Changing titles and labels. 38
B.2 Changing axes’ ranges manually. 39

x List of Figures

B.3 Panning. Upon the first click, the PlotPanel stores the event
location as the origin. As the user drags, the PlotPanel pulls
the panning buffer image in CentralStorage, translates it ap-
propriately, and draws it to the screen buffer. Upon mouse
release, the plot is shifted to complete the pan. 40

B.4 Plotting orbit lines. When the user clicks, the PlotPanel checks
to see if the program is in Plot Orbit mode. If it is, then it
plots the orbit accordingly. 41

B.5 Calling Repaint() on ComponentGraphPanel. 42
B.6 Printing . 43
B.7 Solving forward. In this first step, the solver thread is started. 43
B.8 Solving forward. When the solver thread finishes, it notifies

the central ODEs to add the new points and the TabbedOut-
putPanel to update its GraphPanels. 44

B.9 Zooming. Upon the first click, the PlotPanel stores the event
location as the origin. When dragging, the PlotPanel draws
a zoom box on the screen buffer. Upon mouse release, the
plot ranges are updated to complete the zoom. 45

B.10 The user interface includes a large number of different types
of panels; this diagram illustrates their inheritance hierarchy. 46

B.11 The user interface consists of a hierarchy of components; this
diagram highlights the UI’s containment hierarchy—that is,
which classes contain instances of other classes as members. 47

Acknowledgments

We would like to thank our liaison Professor Darryl Yong for his assistance
and for his devotion to the ODE Toolkit project. We would also like to thank
Martin Hunt ’08 for taking the time to discuss with us the current state
of the project and for providing much useful insight into its history and
design. We would like to thank DruAnn Thomas for her constant work in
making the clinic program run smoothly, and also Professor Bob Keller for
leading the program. Finally, we would like to thank our advisor Professor
Chris Stone, without whose invaluable assistance and guidance our work
would not have been possible.

Chapter 1

Introduction

1.1 Background

ODE Toolkit is an educational program designed to solve Ordinary Differ-
ential Equations (ODEs). While there are a variety of other software pro-
grams available that solve differential equations, most are either expensive,
general purpose mathematical tools (such as Maple and MATLAB) or are
too specialized to be useful throughout an entire class.

While numerical solving of ODEs is not the focus of most introduc-
tory differential equations courses, properly designed software can assist
instruction in a variety of ways. Software can quickly show the behavior of
solutions, aid in developing the student’s intuition, and show models use-
ful to other disciplines. Software is also ideal for demonstrating how the
behavior of simple systems is dependent on initial conditions and critical
regions.

Ideally, good software can also show the limits of numerical solutions.
With good examples, software can demonstrate where individual solvers
fail. A good software package can show how different solvers deal with
numerical issues and also compare numerical and analytical solutions to
demonstrate the limits of numerical methodologies.

The Community of Ordinary Differential Equations Educators (CODEE)
sponsored both the original ODE Architect and its replacement, ODE Toolkit.
Architect had been used by the HMC Math Department for many years to
teach differential equations courses. However, it is antiquated and propri-
etary, and only runs on Windows.

This is undesirable for several reasons. First, scientific and academic
software should be open to peer review and enhancement. An open source

2 Introduction

license would allow experts and enthusiasts to develop, improve, enhance
and debug the software. Even better, those who work on open-source
projects typically do so for free. In addition, many in the educational com-
munity do not use Windows. Mac OS X and Linux are increasingly popular,
so it makes little sense to restrict the operating system to Windows when
Java allows easy portability.

1.2 Initial State of ODE Toolkit

Prior work contracted by the Harvey Mudd Math Department produced
software adequate in some respects but lacking in others. At the beginning
of our project, the software was mostly functional. The software could ac-
cept systems of first-order ODEs as input, solve them, and graph the re-
sults. Version Alpha 0.9 was able to manipulate the viewing window, save
and load sessions, and display additional information, such as direction
fields.

However, we were concerned by the state of the internal structure of
the code. Over the course of the past five years, work on the project was
conducted by a series of Harvey Mudd undergraduates. The code base
grew organically, often in non-obvious, convoluted ways. Due to the ad
hoc nature of past development, documentation was nearly nonexistent
and the code was unmaintainable.

1.3 Problem Definition

Our goal was to maintain all current functionality of ODE Toolkit, thor-
oughly document the existing code, and overhaul the architecture, imple-
menting a more modular design. We intended to improve the maintain-
ability and upgradeability of the ODE Toolkit software, while making ad-
justments and enhancements to the user interface experience. Figure 1.1
shows our final design on a phase plot tab. Our final version of ODE Toolkit
is referred to as version alpha 1.0.

Future developers are our primary audience. We provided thorough
documentation on the architecture and all components of the program. De-
velopers will be able to rapidly familiarize themselves with the layout of
the software, quickly determine any component’s role, and easily improve
the new modular architecture.

The biggest single issue that we saw in the original ODE Toolkit was
that the code was minimally documented and poorly organized. Because

Problem Definition 3

Figure 1.1: The ODE Toolkit version Alpha 1.0 user interface

the architecture developed over several years, with pieces implemented
by numerous individual coders, the code had no central plan or organiza-
tion. This led to an unwieldy code base that was unnecessarily difficult for
new coders to maintain, upgrade, debug, and comprehend. Furthermore,
the lack of consistent documentation discouraged new coders from docu-
menting their own work. In its disorganized state, any further changes or
upgrades made to the program could have actually exacerbated this prob-
lem by further complicating the architecture, ultimately leading to more
frequent and more severe bugs.

Thus we decided to reorganize and refactor the code into a clear, modu-
lar, well-documented architecture. We completed the process of document-
ing the current architecture in the fall semester, and began refactoring the
code to fit our architecture plans in the spring.

Chapter 2

Original Architecture

Before discussing the changes in our new design, it will be useful to explain
the code’s original architecture of the code. The majority of our refactoring
work focused on the user interface package, so we will describe the most
problematic details here. Figure 2.1 shows the role of the User Interface
in the architecture. An overall summary of the remaining packages in the
original architecture can be found in Appendix B.1.

2.1 User Interface

The User Interface package’s name was very misleading. Although each
class in the user interface served as an actual Java user interface compo-
nent, the package was also responsible for various calculations, drawing
graphs, and program control. The main function was found in GUI, the
class that defines the highest level user interface component (the entire pro-
gram window). The majority of the project’s hand-written code was in this
package, which was indicative of its inappropriately large scope.

This lack of modularity went down to the class level. It was not merely
that the package included inappropriate files, but that its classes included
inappropriate functionality, making maintenance and code comprehension
difficult.

The following summarizes the most problematic subpackages and classes.
Figure 2.2 identifies the classes defining the main parts of the User Inter-
face.

6 Original Architecture

Parser Util

SolverStorage

External
Libraries

User
Interface

Figure 2.1: Diagram of the main components in the original architecture of
ODE Toolkit.

2.1.1 GUI

GUI was the main Java window frame for the application, but also con-
trolled the entire program. In fact, it housed the main function, which sim-
ply instantiated a GUI. The constructor handled the initialization of the
program, loading external libraries and creating a new ODE file to work
on. GUI held multiple open ODE files, in the form of ODEWorkspaces, in
a tabbed panel.

2.1.2 ODEWorkspace

ODEWorkspace was the central container for ODE information, solver pa-
rameters and all other variables related to inputting, solving and display-
ing ODEs. It contained a panel for specifying ODEs and parameters and a
panel for viewing the resulting solutions, as well as a status bar for useful

User Interface 7

Figure 2.2: Screenshot highlighting the areas of the display controlled by
each UI component.

information, typically where the user last clicked on the graph.

2.1.3 TabbedGraphPanel

TabbedGraphPanel contained a number of GraphPanels and mediated be-
tween them and the ODEWorkspace. Each TabbedGraphPanel created Com-
ponentGraphPanels for each dependent variable, a PhaseGraphPanel for
the first two independent variables (if there were more than one indepen-
dent variables), a MultiGraphPanel, and a WorkspacePanel.

2.1.4 GraphPanel

The GraphPanel package contained a number of different classes defining
the different panels that were displayed within a TabbedGraphPanel.

8 Original Architecture

GraphPanel

The GraphPanel was a short abstract class from which each of the different
kinds of tabs inherited. Rather than using proper inheritance structures,
ComponentGraphPanel, PhaseGraphPanel, and MultiGraphPanel were vir-
tually identical to each other, with large amounts of code copied verbatim.
These child-classes were responsible for the toolbar above the graph and
popup menus accessible by right-clicking.

ComponentGraphPanel

ComponentGraphPanel contained graphs of one dependent variable ver-
sus time.

PhaseGraphPanel

PhaseGraphPanel contained graphs of one dependent variable against an-
other. It was largely identical to ComponentGraphPanel, with added func-
tionality for plotting orbits and finding equilibria.

MultiGraphPanel

MultiGraphPanels contained graphs of multiple dependent variables against
time.

WorkspacePanel

WorkspacePanels represented the advanced tab. Strangely, despite inher-
iting from GraphPanel, WorkspacePanel did not in fact include a graph.
Rather it included curve information, including tables of points. Thus,
most of the functions required of a GraphPanel were overridden and left
empty.

2.1.5 PlotPanel

The PlotPanel subpackage exemplified the user interface’s problems. Plot-
Panels were responsible for drawing graphs, displaying them within the
interface, calculating window dimensions based on graphs, and calculat-
ing and displaying direction fields. All of this was handled by a single
class, depending on the type of plot desired. The files in this package were
generally poorly written and documented.

User Interface 9

PlotBox2D

PlotBox2D represented all of the ”background” parts of a plot, including
the graph itself, labels, tick marks, and grid lines. It was responsible for
drawing itself and contained modal information, plot ranges, pixel dimen-
sions and a host of other functions. It was also responsible for panning and
zooming.

Plot2D

Plot2D inherited from PlotBox2D, and represented plots with only one de-
pendent variable. It also maintained curve and direction field information
and was responsible for drawing curves. It was used by ComponentGraph-
Panel and PhaseGraphPanel.

MultiPlot2D

This class was similar to Plot2D, but was instead responsible for plots with
multiple dependent variables (i.e., MultiGraphPanels).

Chapter 3

Design Improvements

Considering the problems and limitations of the original architecture, we
created the following classes and packages to replace the old User Interface.

3.1 Control (Package)

The aim of the new Control package was to redirect input from the UI into
more abstract, backend commands that could easily dictate program flow
from a central source. This alleviates the need to route data between the
various user interface classes.

3.1.1 Main (Class)

Main starts the program. Right now it simply begins the GUI, but it should
be refactored with GUI to load the solvers, load the libraries, etc.

3.1.2 Listeners (Package)

Listeners notify the various classes of relevant user events, allowing them
to transfer program flow to Control. Currently, this package contains many
listeners from the UI, but some still need to be transferred over, and listen-
ers with duplicate functionality need to be merged.

3.1.3 Data Representation (Package)

We have aggregated a significant amount of scattered and non-encapsulated
data in the User Interface into a number of useful data structures, located

12 Design Improvements

Parser Util

SolverStorage

External
Libraries

"User
Interface"

Figure 3.1: Diagram of the main components in the original architecture
of ODE Toolkit, color-coded to indicate portions that were separated in the
new design (Figure 3.2). See Appendix B.1 for summaries of packages in
the original architecture.

in this package. Most important of these are the data structures used to
encapsulate plot information and functionality.

PlotState (Package)

PlotState is a package containing the classes that store the internal repre-
sentations of each plot panel. It contains the abstract class BaseState and its
two children, SinglePlotState and MultiPlotState.

BaseState
This is an abstract class that represents a generic graph. It contains
a title, two Axes, a vector of Curves, a direction field equation, a

Control (Package) 13

Control User
Interface

Input/Output

Drawer

Data
Representation

Parser

Solver

Figure 3.2: Diagram of the main components in the redesigned architecture
of ODE Toolkit, color-coded to indicate portions that were separated from
the old design (Figure 3.1). See Appendix B.2 for summaries of the new
architecture’s components.

curve color, and other important information. It also contains func-
tions common to all types of PlotStates, such as changing Axis ranges.
This completely separates a great deal of functionality and informa-
tion from the user interface.

SinglePlotState
This stores the internal representation of a plot with a single depen-
dent variable, and includes functionality for direction fields. This is
the most common type of PlotState used, as it is used by all Compo-
nentGraphPanels and PhaseGraphPanels through their PlotPanels.

MultiPlotState
This is used to represent plots with multiple dependent variables. As

14 Design Improvements

different kinds of plots must be drawn differently, each PlotState has a
DrawMySolutions function (defined as an abstract function in BaseS-
tate) which wraps a call to the appropriate function in Drawer (see
below).

Axis (Class)

Axis contains an upper and lower bound, a label, and a number of com-
putational functions. It has the information necessary to convert between
coordinates in pixels and plot states if it is given its width in pixels as dis-
played on the screen. This class is also responsible for calculating place-
ment of tick marks and gridlines.

By isolating the calculation of axes from the user interface, we were able
to simplify much of the drawing as well. Changing the scale of the axis
from linear to logarithmic is now all taken care of internally and invisibly
to other components. It also includes some safeguards for resizing.

ODEVar (Class)

ODEVar is a simple class used to represent a variable, containing the vari-
able’s name and its position in the variable ordering being used by the pro-
gram. That is, if points are stored in the form (t, x, y) then the ODEVar for
t has position 0, the one for x has position 1, and the one for y has position
2. It was created because previously the variable’s name and position were
being passed separately, which led to messy, bug-prone, and non-intuitive
code.

ODEVarVector (Class)

ODEVarVector extends the class Vector〈ODEVar〉 with a number of com-
monly used functions (such as providing a string with all variable names)
included.

3.2 User Interface (Package)

3.2.1 TabbedOutputPanel (Class)

TabbedGraphPanel was renamed TabbedOutputPanel for consistency (see
OutputPanel, below). In addition, we did some internal cleanup and refac-

Drawer (Package) 15

tored the code to use classes such as ODEVar and to properly instantiate
new OutputPanels.

3.2.2 OutputPanel (Class)

To rectify the unusual situation where WorkspacePanels (now renamed
DataPanels for clarity) were treated as GraphPanels and then forced to
override inapplicable functions, we created a new abstract OutputPanel
class, which we made the parent of both the DataPanel and GraphPanel
classes.

3.2.3 GraphPanel (Class)

GraphPanel was originally a small class, while its three children, Com-
ponentGraphPanel, MultiGraphPanel and PhaseGraphPanel, were quite
large. We have since removed all functionality common to these three child
classes (which was mostly copied over verbatim) and moved it into Graph-
Panel. We also moved some formerly independent classes, such as Pop-
upListener, into GraphPanel as internal classes. This left the GraphPanel
parent class containing the bulk of the code, with its children containing
only the code necessary to specify the slight variations.

3.2.4 PlotPanel (Class)

PlotBox2D, Plot2D, and MultiPlot2D have all been broken up and their
components renamed. The parts of these files dealing with the internal rep-
resentation of the graph’s state were moved into the PlotState classes. The
functions responsible for actually drawing the curves, plot background, di-
rection fields, and so forth were moved into Drawer, where they are called
by PlotState. The UI components, listeners, etc. were moved into the Plot-
Panel class, each of which contains a PlotState. Each GraphPanel contains
a PlotPanel.

3.3 Drawer (Package)

Drawer is now a separate, highly compartmentalized class contained within
its own package. Graph-specific elements, such as curves and direction
fields, are drawn separately from generic elements common to every plot,
such as titles, labels, and tick marks. All of Drawer’s public functions take
as input a Graphics object with which to paint. Currently, only PlotStates

16 Design Improvements

call Drawer, through functions dedicated to drawing specific components
of the type of PlotState given. The Drawer package also contains a class for
generating PostScript output.

Chapter 4

Testing and Results

4.1 Testing

We decided to use manual testing for ODE Toolkit for two main reasons:
first, since we were refactoring rather than creating new functionality, fig-
uring out the exact intended output of each original function did not seem
particularly productive; second, the changes we were making required test-
ing the graphical output of the program, making automated testing diffi-
cult. Given the goals of our project, we felt that automated testing was
unnecessary.

Thus, we determined a set of features for ODE Toolkit, which we then
used as a basis for testing. We tested all features on multiple ODE systems
of varying complexity. Please see Appendix C for a full testing procedure.

4.2 Results

The new version of ODE Toolkit accomplishes all tasks described in the Test-
ing section, on Windows, Mac, and Linux systems. Saving and loading now
works, unlike in the old version, as does printing. Logarithmic scale axes
now work as expected: the user can enable logarithmic scaling on either
the horizontal or vertical axis, or both. Panning now implements offscreen
buffering, resulting in a much faster and smoother process.

The user interface has some new features as well. More features have
been added to the toolbar, such as printing, exporting, panning and zoom-
ing. (See Figure 1.1 for a screenshot of the user interface).

In addition, the new ODE Toolkit performs all these actions consider-
ably more quickly. Drawing more plot lines slowed ODE Toolkit to a crawl,

18 Testing and Results

and Direction Field options took a significant amount of time to recompute
slopes and repaint after each change. The result of our refactoring was an
ODE Toolkit that handled all the above functions immediately, making the
program much more responsive and less frustrating to use for students.
Figure 4.1 lists some of the more significant benchmark times for ODE
Toolkit performed on a 2008 Macbook Pro running Mac OS X 10.5. These
tests are not rigorous, they simply demonstrate the speed issues present in
the alpha 0.9 version. Typically, Windows and Linux performed better than
Macs for Alpha 0.9.

Test Alpha 0.9 (s) Alpha 1.0 (s)
Resize window (at any time) 4 < 1

Plot 10th solution curve 7-9 < 1
Turn on Direction Field

(with 10 orbit lines visible) 14 < 1
Change length of direction

field arrows 27 < 1
Switch tabs with direction

field activated 6-16 < 1
Autoscale graph to fit in

viewing window 10 < 1

Figure 4.1: Selected benchmark comparison in Mac OS X. The tests were
run on a 2008 Macbook Pro, using the ODE x′ = y, y′ = −5 sin(x)− y.

Chapter 5

Addition Deliverables

5.1 Documentation

We believe that by thoroughly documenting our code and architecture that
we will dramatically enhance what future teams will be able to accomplish.
By providing a clear, concise explanation of each component’s roles and re-
sponsibility in one centralized location, we hope to minimize the amount
of time necessary for code familiarization, and ensure that future program-
ming teams can quickly find pertinent sections of code, thus dramatically
improving their productivity.

Our documentation has numerous levels. All functions are commented
at a level appropriate for their complexity. All code files have a header
clearly describing their purpose and dependencies. Every package has a
file describing in detail what that component does and how it relates to
other components, as well as a diagram or document detailing the purpose
and requirements of its internal files and subcomponents. The repository
contains a useful history log describing each major revision and the cur-
rent direction of the project. The documentation has been compiled using
Javadoc into an HTML linked guide and placed in the repository and on
the ODE Toolkit website.

5.2 Developer Tutorials

We wrote a short tutorial for programmers that describes how to begin
working on the project within the Eclipse integrated development envi-
ronment, main architectural components, and how these components fit

20 Addition Deliverables

together. It is included in the repository as a PDF file with its LATEX source,
and is also included here as Appendix D.

5.3 Example Library

We have compiled a small set of examples in the form of ODE Toolkit save
files (.ode) containing common and informative systems of ODEs. The set
of examples is included in the Library of ODE Toolkit. See Figure 5.1 for an
example.

Figure 5.1: Sample ODE file: The Lorenz Attractor

5.4 Open Source License

One of the requests from CODEE was to make ODE Toolkit open source.
There were a few requirements given to us to take into account when se-
lecting a license. ODE Toolkit should be free to run, for any purpose. The
source code should be made available, and open to be adapted as desired.
The software should be free to distribute. Developers should also be free

Trac Wiki 21

to release improvements of the code. ODE Toolkit cannot be sold, none of
the code can be patented, and the code may not be used for commercial
software. Any parts of the code may be used in another program, provided
that it gives credit to the authors and is distributed under the same license.

Given these terms, we have chosen version 3 of the GNU General Public
License, as it meets all conditions on how the code can be used or adapted
and is a commonly accepted and well-known licensing agreement.

We included a commented copyright notice in each Java file and in-
cluded a license file in the repository containing the GNU GPL version 3
copyright agreement. The header comment is shown in Appendix E.

5.5 Trac Wiki

We have compiled a list of known bugs and suggested enhancements using
the Trac ticket system, which will be available to future developers of the
project. Trac allows developers to be able to choose tasks according to their
interests and ambitiousness, and provides a centralized place for a team to
manage the project’s direction.

Listed below are some of the most prominent tickets:

• Bug: If the user attempts to solve while a popup window is displayed,
the UI crashes.

• Bug: Printing does not seem to work under Linux.

• Bug: The UI does not automatically repaint after some popup com-
mands.

• Improvement: Allow the user to plot analytical solutions to compare
to numerical solutions.

• Improvement: Draw the grid lines on the offscreen plot rather than
on the screen. This would allow the user to see the grid move while
panning.

• Improvement: Reroute program flow to go through Control rather
than ODEWorkspace

• Improvement: Improve the online help system.

• Improvement: Allow the parser to accept simple higher order differ-
ential equations.

Chapter 6

Conclusions and Future Work

In order to facilitate future development of the ODE Toolkit project, we have
proposed a new internal design and made significant progress toward its
full implementation. We have provided documentation and tutorials to
ensure the continuation of this work, and also contributed additional ma-
terials providing immediate benefits to the project.

This section details necessary future work.

6.1 Completing Implementation of Control

There is still much to be done in cleaning up the flow of the program. We
would ultimately like for all UI events to call functions in Control, which
would then behave appropriately. Furthermore, the functions that have
been moved to Control have not been refactored to eliminate redundancies.

6.2 Creating an I/O Package

The code that implements saving and loading files needs to be cleaned up.
Currently the program uses code generated by Castor XML, which inter-
faces between Java and XML. However, the files generated for this purpose
clutter both the Util and Util.XML packages. They should be separated and
placed into a new package. There are other components that also seem like
they should be placed in a dedicated File Operations package, such as those
for exporting a plot as a GIF- or JPEG-encoded image.

24 Conclusions and Future Work

6.3 Teacher Utilities

We would like to extend ODE Toolkit’s teacher support functionality in sev-
eral ways. To begin, it would be useful if educators could annotate graphs
and had an area available for a short problem statement or description. We
also envision the example library supporting pre-implemented ‘steps’ that
students can follow. Additionally, allowing educators to set up the Web
Start program to load an ODE upon launching would greatly improve ease
of use for students, although a tool to automate this process for educators
would probably be needed as well.

Appendix A

Project Management

Despite our best efforts to keep a time buffer in the second semester, we
ended up working all the way up to project deadlines, and even had to
push them back at times. However, we suggest that this was due to initial
confusion, overly optimistic goals, and an overall concern for the long-term
future of ODE Toolkit beyond our own clinic project.

A.1 First Semester

Figure A.1 shows our work schedule for the first semester. In hindsight,
we should have been able to accomplish more during the first semester.
This would have made our second semester work much more reasonable.
Several factors contributed to the situation, described below.

A.1.1 Initial Setbacks

The project suffered from a slow start. We faced a significant difficulty set-
ting up the Eclipse platform to work with the ODE Toolkit repository and
becoming familiar with the repository structure. We were also delayed by
the late receipt of our clinic machines, on top of the time and effort that
went into setting them up. An additional setback occurred when we found
that the most current version of the ODE Toolkit program, version Alpha
1.0 (not to be confused with our final release), contained numerous bugs
that rendered it barely functional. As a result, we had to search through
the previous revisions to find the latest working version, Alpha 0.9, which
took additional time. Many of these impediments can be avoided in the
future with proper documentation and proper use of version control. Our

26 Project Management

developer tutorials should allow future developers to avoid such difficul-
ties.

A.1.2 Initial Optimism

In our initial scheduling, we underestimated the complexity of the architec-
ture and, subsequently, the amount of time required to become sufficiently
familiar with it to attempt refactoring. We originally allocated about two
weeks of debugging for familiarization, leaving documentation to be com-
pleted after our refactoring effort. However, at the end of the debugging
phase, we felt that debugging alone would not give us a comprehensive
understanding. Documenting the current architecture seemed to be the
most efficient path toward understanding it, with the added benefit that
significant amounts of the documentation would still be relevant to the fin-
ished project. Thus, we spent about three weeks completing package and
file overviews; function-level comments were added after refactoring. In
order to compensate for the unexpected delay, we considered abandoning
the port of the ODE Architect example library, as any future workers on the
project should be capable of doing this in our stead. In addition, we re-
duced our time commitment to refactoring the architecture from six weeks
to five. As it turned out, we needed far more time than five or six weeks,
especially since we were unable to finish writing formal specifications for
our proposed design before the winter break.

A.2 Second Semester

Figure A.2 shows our work schedule for the second semester. Even in the
second semester, our overly optimistic outlook persisted for several weeks.
This resulted in a significantly back-loaded schedule.

A.2.1 Initial Design and Refactoring Attempt

First, we spent a few weeks planning our new design. We proposed a set
of new classes and sketched out a few sequence diagrams to test them out.
After that, we began refactoring. We started first with simple modifications
to the package organization, then began to pull apart the plot-relevant data
from the user interface components to create a PlotState data structure. We
also attempted to separate the drawing and control functionality from the
user interface components.

Second Semester 27

A.2.2 Design Phase

Unfortunately, it soon became apparent that we could not simply divide up
the old classes into new ones; we ran into a number of issues with our pro-
posed design, and needed to ensure that our new architecture made sense
for every possible use of the program. Thus, we decided to stop refactor-
ing and plan out our new design in much more exact detail, creating se-
quence diagrams for all sufficiently complex functions, and ensuring that
all classes had the necessary information to perform their duties straight-
forwardly. This took a significant amount of time to complete.

A.2.3 Refactoring

By the time we finished designing, we only had a few weeks to actually
implement our changes. On top of that, we decided it would be best to
undo our changes from the initial refactoring attempt and start clean due
to the large changes in design we had since made. However, with the de-
sign more properly fleshed out, the refactoring process itself became much
more straightforward. With prudent re-prioritization of our other academic
coursework, we were able to accomplish a great deal of work in this short
amount of time.

28 Project Management

N
a
m

e
S
t
a
r
t
 D

a
t
e

E
o
r
t

D
u
r
a
t
io

n
R

e
s
o
u
r
c
e

S
h
o
r
t
 N

a
m

e
s

O
c
t
 0

8

6
1

3
2

0
2

7

N
o
v
 0

8

3
1

0
1

7
2

4

D
e
c
 0

8

1
8

123456

Debug/Docum
entation

2008-10-11
100

6w 4d
E, R, S, A

Prepare Phase 1 Presentation
2008-10-17

20
1w 2d

A, E, S, R

Testing
2008-10-24

40
2w

E, S, R, A

Prepare Phase 2 Presenation
2008-11-19

40
6d

E, S, R, A

M
id-year Report Draft

2008-11-26
20

1w 2d
A, E, S, R

M
id-year Report Final

2008-12-05
20

1w
A, E, S, R

G
a
n
t
t
 C

h
a
r
t
 (

T
a
s
k
) (

C
lin

ic
)

Figure A.1: Tasks accomplished in the first semester

Second Semester 29

Nam
e

Start Date
E

ort
Duration

Resource
Short Nam

es
Jan 09

19
26

Feb 09
2

9
16

23
M

ar 09
2

9
16

23
30

Apr 09
6

13
20

27
M

 ...
4

123456789101112

D
e
s
ig

n
 P

h
a
s
e
 1

2
0
0
9
-
0
1
-
2
1

6
0

2
w

A
, E

, S
, R

R
e
fa

c
t
o
r
in

g
 P

h
a
s
e
 1

2
0
0
9
-
0
1
-
2
7

9
0

4
w

 5
d

E
, R

, A
, S

O
p
e
n
 S

o
u
r
c
e
 L

ic
e
n
s
e

2
0
0
9
-
0
2
-
2
2

1
2

1
w

A

P
h
a
s
e
 3

 P
r
e
s
e
n
t
a
t
io

n
2
0
0
9
-
0
3
-
1
1

6
0

1
w

 1
d

A
, E

, S
, R

D
e
s
ig

n
 P

h
a
s
e
 2

2
0
0
9
-
0
3
-
0
2

1
2
0

4
w

 4
d

E
, S

, R

P
r
o
je

c
t
s
 D

a
y
 P

o
s
t
e
r

2
0
0
9
-
0
4
-
0
3

4
0

1
w

 4
d

E
, S

, R
, A

R
e
fa

c
t
o
r
in

g
 P

h
a
s
e
 2

2
0
0
9
-
0
4
-
0
9

1
6
0

2
w

 3
d

A
, E

, S
, R

T
e
s
t
in

g
2
0
0
9
-
0
4
-
2
7

1
0

4
d

A

F
ix

e
s
/
E
n
h
a
n
c
e
m

e
n
t
s

2
0
0
9
-
0
4
-
2
7

3
0

4
d

A
, E

, R

P
r
o
je

c
t
s
 D

a
y
 P

r
e
s
e
n
t
a
t
io

n
2
0
0
9
-
0
5
-
0
2

8
0

3
d

E
, S

, R
, A

F
in

a
l R

e
p
o
r
t

2
0
0
9
-
0
4
-
2
8

4
0

1
w

 4
d

A
, E

, S
, R

T
u
t
o
r
ia

ls
2
0
0
9
-
0
5
-
0
4

1
5

5
d

S

Gantt Chart (Task) (Clinic)

Figure A.2: Tasks accomplished in the second semester

Appendix B

Documentation

B.1 Package Summaries (Old Architecture)

Unless otherwise specified, these packages were retained in the final ver-
sion.

B.1.1 Parser

The Parser is mostly automatically generated by JavaCC, and is used to
translate the equations entered by the user into a form usable by the pro-
gram. It also has hand-coded definitions of the various functions sup-
ported, such as addition, subtraction, floor, sine, etc.

B.1.2 Solver

Like the parser, the solver package is already well-defined and modular.
It consists of a collection of different numerical solvers with each sharing
a common interface, but not all written in Java—non-Java solvers do not
work on non-Windows platforms.

B.1.3 Storage (Replaced by DataRepresentation)

The Storage package defines a data hierarchy for working with the plotted
data points. It consists of three classes: Workspaces, ODEs, and Curves.
At the top level, Workspaces represent a single tab open in the program.
Workspaces contain a collection of ODEs, each representing one equation
that has been entered in that Workspace. In turn, ODEs contain multiple
Curves. At the bottom level, data points are stored as arrays of doubles in

32 Documentation

Curves; each time the user hits the ”Solve” button again, a new Curve is
created to contain the points generated by the solution.

B.1.4 Util

Util provides a variety of functionality, primarily file saving and loading,
which should probably be handled in a separate package. This makes up
more than half of the Util folder, and is entirely automatically generated
by Castor, a software utility for storing Java objects in XML. There are also
files for navigating a file system, which would fit well in a file I/O package.
In addition, there are files for finding equilibrium solutions that are not
currently used. Finally, Util contains a utility to extract non-Java solver
files from the distributed JAR, as well as a few other miscellaneous files.

B.1.5 External Source (Removed by refactoring)

There are a number of small packages from external sources, typically open-
source code that is used to handle a number of mundane tasks such as dis-
playing the opening splash screen. Some of these, such as IntHashtable.java
in the Acme package, are obsolete. Others would likely be better served as
members of other packages.

B.2 Package Summaries (New Architecture)

This section describes the architecture’s new packages.

B.2.1 Control

Control currently consists of three files, plus the DataRepresentation sub-
package:

Main
Currently, the Main class is a wrapper that calls the GUI() constructor,
”turning on” the program’s user interface.

CentralStorage
CentralStorage is used for storing the image used in panning, and
may ultimately be used to store ODEs as well as any other objects
that must be universally available.

Package Summaries (New Architecture) 33

Listeners
The primary purpose of Listeners is to ensure that all program flow
is handled in one place, thus reducing the ”spaghetti code” feel and
allowing greater reusability. All listeners to any program compo-
nent should eventually be placed within this file (which may at some
point be expanded to a full package). Currently, listener functions are
grouped into internal classes according to the component which uses
them. The subclass naming convention is:

“Parent class name” + L.

Thus, ToolkitMenuBar’s listener functions are in the internal class
ToolkitMenuBarL.

Ultimately, every component should have its own unique listener
function, even if it does the same thing as another component. This
is to prevent unnecessary interdependencies, to maintain consistency
(having this function wrap another function is, however, fine), and to
ensure that two user interface components that do the same thing can
be easily decoupled if one needs to be changed.

Functions should be given all information that they will need, such
as mouse click data or a pointer to the user interface.

Although listeners will still be added by the individual components,
each listener will now refer to a function in this file. Keeping all
the listener definitions in one place will make it easier to extend and
maintain, and will keep program flow more clearly defined.

Further information on listeners is available in the top-level docu-
mentation of the repository as GeneralListenersInfo.txt.

DataRepresentation

DataRepresentation is a collection of data structures used throughout the
program.

Axis
This class is the internal representation of an axis. It knows its range,
is capable of computing where tick marks should be placed, can con-
vert plot coordinates into pixel coordinates given a pixel length and
vice versa, handles scaling (and includes the various necessary safe-
guards) and handles conversion to and from logarithmic scale.

34 Documentation

Workspace
The Workspace class contains the representation of a single file tab.
This is the backend that ODEWorkspace interacts with. It contains a
vector of all ODEs that have been entered in that tab. The Workspace
also takes new ODEs from the user interface (i.e., the ODEWorkspace),
sends them to the parser, and creates new ODE objects to represent
them.

ODE
The Workspace holds a collection of ODEs, each representing one
ODE that has been entered in that workspace. This contains the repre-
sentation of the actual ODE itself. Primarily, however, it is responsible
for dealing with the Curves associated with any given ODE.

Curve
Each Curve represents a single solution. Curves contain a collection
of points generated by a solution given a particular set of initial pa-
rameters. Currently the Curve’s points can be changed by a setter,
which is poor encapsulation and should be changed.

ODEVar
This simple class is designed to contain the internal representation of
a variable, namely its name and the index reserved for it within the
points list. For instance, if points are stored (t, x, y) then t has position
0, x 1 and y 2.

ODEVarVector
Extends Vector<ODEVar>, providing some additional useful func-
tionality. Always use ODEVarVector instead of Vector<ODEVar>.

PlotPoint
Not currently widely used, PlotPoint extends Point2D.Double with a
single boolean added, which represents whether it is connected with
a line to other points.

PointComparer
PointComparer compares the x-coordinates of two plotpoints. Imple-
ments Comparator<PlotPoint>. Possible target for refactoring.

Tick
A Tick includes a tick-mark’s value (as a String), its axis-location, and
whether its label uses scientific notation.

Package Summaries (New Architecture) 35

PlotStates
This package contains classes for data structures representing plots.
Details are described in Chapter 3.

B.2.2 Drawer

Drawer provides classes for the creation of graphical representations of plot
states. It can draw Graphics objects for display on the screen or for ex-
porting PostScript output. The Drawer creates the graphical representation
of the plot states. There are overloaded functions that take specific types
of plot states. PlotStates call drawPlotBackground first, which draws the
plot’s frame (titles, labels, tick marks, grid). Then they call drawCurve for
each of their curves, passing in a separate graphics object from the screen
one. This offscreen buffer is usually larger than is visible, to make panning
more efficient.

B.2.3 UI

UI contains the program’s user interface. Some functions handling pro-
gram flow control remain here, but we have changed many aspects as well.
The following classes and packages are new to the code:

OutputPanels

Provides an abstraction of tabbed panels for displaying different forms of
output, including graphs and data. Subpackages contain various different
kinds of OutputPanels, plus PlotPanel, which is not an OutputPanel but is
embedded in GraphPanels.

OutputPanel
An OutputPanel is a generic abstract class that contains some basic
functions. It is the parent of DataPanel and GraphPanel.

TabbedOutputPanel
A TabbedOutputPanel is essentially a collection of the various Out-
putPanels used by a graph.

OutputPanels.DataPanel
The DataPanel subpackage handles the ”Advanced” display tab for
a given ODE tab. The most important class is also called DataPanel,
and consists of a split pane: on the left is a Java swing tree view of the

36 Documentation

stored ODEs and their curves, and on the right is a CurveInspector
panel, which displays the specific data points in the selected curve.
(Each separate solve action creates a new curve, and changing the
ODE makes a new ODE in the hierarchy. These are not to be confused
with new ODE tabs, made with the File->New command.)

OutputPanels.GraphPanels
The GraphPanels subpackage is responsible for showing graphs and
handling the associated UI elements. It also contains PlotPanel, which
though not itself a GraphPanel is embedded within GraphPanels.

GraphPanel
GraphPanel is an abstract class used to hold a two-dimensional
graph and its associated UI components. GraphPanels all con-
tain a name and a vector of curves. They have methods for print-
ing and exporting PostScript output, receiving data, and set-
ting and maintaining plot variables. GraphPanels have a toolbar
which includes buttons for displaying directional fields, print-
ing, and clearing, and also include a great deal of functionality
common to all GraphPanels.

ComponentGraphPanel
ComponentGraphPanels are GraphPanels that represent a graph
of two of an ODE’s variables. However, they are currently used
only to plot single dependent variables against time. They are
created and contained in the ODE’s TabbedOutputPanel, which
currently creates one for every variable used in the ODEWorkspace.

PhaseGraphPanel
PhaseGraphPanels are very similar to ComponentGraphPanels,
except they have additional ”Plot Orbits” and ”Find Equilibria”
features. Currently TabbedOutputPanel creates only one, for the
first two dependent variables, and there is no way of creating
more.

MultiGraphPanel
MultiGraphPanels draw plots of multiple variables against a sin-
gle independent variable. They are currently used to plot all
variables against time (t). It would be nice to be able to select
which variables are shown.

PlotPanel
PlotPanels are the panels on which the actual curves are plotted,

Package Summaries (New Architecture) 37

and include gridlines, axes, tick marks, borders, and labels. Each
PlotPanel wraps a PlotState, so its parent GraphPanel interacts
with its PlotState through the PlotPanel. In addition, they con-
tain a number of mouse listeners that would be difficult to move
into Control.Listeners.

38 Documentation

B.3 Sequence Diagrams

Because of the size of the project and the number of packages involved
in most tasks, we decided that it would be helpful to create a series of
sequence diagrams detailing how program control and information was
passed between different classes for various different common actions. We
have reproduced all of our sequence diagrams below.

GraphPanel PlotPanel PlotState

User confirms label
dialog

setTitle(title)

Change Titles/Labels

setTitle(title)

setXLabel(label)

setXLabel(label)

setYLabel(label)

setYLabel(label)

Figure B.1: Changing titles and labels.

Sequence Diagrams 39

GraphPanel PlotPanel PlotState

User inputs new
bounds

setRange(x1, x2, y1, y2)

Manual Axes Change

setXAxis(x1, x2)

setYAxis(y1, y2)

repaint()

Figure B.2: Changing axes’ ranges manually.

40 Documentation

PlotPanel BaseState

User clicks

panAxes(x', y',
viewingWindow)

Panning

User drags (sends
event x, y)

User releases (sends
event x', y')

Graphics

buffer.drawImage(CentralStorage.toDisplay, x, y)

Figure B.3: Panning. Upon the first click, the PlotPanel stores the event
location as the origin. As the user drags, the PlotPanel pulls the panning
buffer image in CentralStorage, translates it appropriately, and draws it to
the screen buffer. Upon mouse release, the plot is shifted to complete the
pan.

Sequence Diagrams 41

PhaseGraphPanel PlotPanel

User sets PlotOrbit
mode

setPlotOrbitMode(boolean)

Plot Orbit

User clicks plot

getPlotOrbitMode()

boolean

ODEWorkspace

solveOrbit()

repaint()

Figure B.4: Plotting orbit lines. When the user clicks, the PlotPanel checks
to see if the program is in Plot Orbit mode. If it is, then it plots the orbit
accordingly.

42 Documentation

PlotPanel

paint(Graphics)

Repaint ComponentGraphPanel

Drawer

drawCurve(Curve, Color,
Image, SinglePlotState)

ComponentGraphPanel SinglePlotState

repaint()

drawMe(Graphics)
drawPlotBackground

(Graphics , this)

viewingWindow

drawDirField(Graphics, SinglePlotState,
Rectangle)

Figure B.5: Calling Repaint() on ComponentGraphPanel.

Sequence Diagrams 43

GraphPanel PlotPanel BaseState

User clicks "Print"

printPlot()

Printing

print(Graphics, PageFormat,
page)

Figure B.6: Printing

OptionsPanel ODEWorkspace ODE

User clicks
"Solve Forward"

solveForward()

User Presses Solve Forward
(Part A: Start Solver Thread)

start()

SolverInterface

solve(ODE ode,
SolverParameters params,

string name) setupSolve(Solver s,
SolverParameters

params, string name)

Solver

Solver

Figure B.7: Solving forward. In this first step, the solver thread is started.

44 Documentation

User Presses Solve Forward
(Part B: Solution ready)

Solver TabbedOutputPanel GraphPanel(s) PlotPanel

solutionReady(Points)

SolutionReceived

SolutionReceived

BaseState

setAutoscaleNeeded()

solutionReady(Points)

ODE

Figure B.8: Solving forward. When the solver thread finishes, it notifies the
central ODEs to add the new points and the TabbedOutputPanel to update
its GraphPanels.

Sequence Diagrams 45

BasePanel BaseState

User clicks

zoomAxes(start, end,
viewingWindow)

Zooming

User drags (sends
event x, y)

User releases (sends
event x', y')

Graphics

buffer.fillRect(start, end)

Figure B.9: Zooming. Upon the first click, the PlotPanel stores the event
location as the origin. When dragging, the PlotPanel draws a zoom box
on the screen buffer. Upon mouse release, the plot ranges are updated to
complete the zoom.

46 Documentation

B.4 Class Diagrams

JPanel

CurveInspector ToolkitPanel

OutPutPanel ODEWorkspace SolveChoicePanel SolvePanel

EulerPanel LSODAPanel RKPanel CVODEPanelGraphPanel DataPanel GraphPanel3D

ComponentGraphPanel PhaseGraphPanel MultiGraphPanel

PlotPanel

Panel Inheritance

Figure B.10: The user interface includes a large number of different types
of panels; this diagram illustrates their inheritance hierarchy.

Class Diagrams 47

GUI

ODE Workspace

Control.DataRepres
entation.Workspace TabbedOutputPanel

DataPanel GraphPanel

PlotPanel

Control.Datapresentation
.PlotStates.BaseState

OptionsPanel

MenuBar

1...*

1...*

1..1

1...1 1...11...1

1...1

1...1

1...1

UI Hierarchy

Figure B.11: The user interface consists of a hierarchy of components; this
diagram highlights the UI’s containment hierarchy—that is, which classes
contain instances of other classes as members.

Appendix C

Testing Procedure

The following are a series of manual tests for ODE Toolkit. This is designed
to be a robust testing procedure.

1. Enter the equation x′ = x. A blank graph with grid lines on, title ”x-
t”, axis labels ”x” (horizontal) and ”t” (vertical), grid lines on, and the
”Grid” and ”Pick Initial Conditions” buttons selected, should appear.
The window should be -1.1 to 1.1 for both x and t. Try turning grid
lines on and off.

2. Without changing initial conditions, hit solve forward. A horizontal
line should appear stretching from 0 to 10. The t-axis should rescale
from 0 to slightly more than 10. The x -axis should stay the same.

3. Without changing initial conditions, hit solve backward. The line
should now go from -10 to 10. The t-axis should also expand accord-
ingly.

4. Click on the graph somewhere random above the line. Initial condi-
tions should change appropriately. Hit solve forward. An exponen-
tial curve starting where you clicked should appear. Plot a few more
curves, forward and backward, and make sure autoscaling works rea-
sonably.

5. Attempt to click as close to (0, 0) as possible. Check to make sure the
initial conditions look reasonable.

6. Right-click on the graph. Make sure that ”Pick Initial Conditions”
mode is selected here too. Now select ”Pan”. Make sure that the

50 Testing Procedure

”Pan” button in the toolbar also selects. Play around with the dif-
ferent modes and make sure that the toolbar and the popupmenu’s
statuses always match, but when you’re done come back to ”Pan”.

7. Click and drag on the graph. The grid lines and tick marks should
disappear and the curves should pan according to where you move
your mouse. Let go, and the gridlines and tick marks should reap-
pear, and the tick labels should update.

8. Click ”Autofit”. It should return you to where the graph was before
you started panning.

9. Switch to ”Zoom” mode.

10. Click a point on the graph, and drag down, to the left or the right.
A blue box should follow your mouse cursor, anchored to where you
originally clicked. When you release, it should zoom in to the area
you selected. Zoom in very close around 0, and make sure scientific
notation works.

11. Click again, and this time drag up and to the right. A small guide box
should appear within the blue box. Make the blue box about three
times as wide and long as the guide box, and release. The graph
should zoom out, with the range expanded by about a factor of 3.
Zoom out very far, and make sure scientific notation works.

12. Try manually scaling the graph via the ”Change Window Ranges”
option in the scale menu. Hit Autofit again to return to where you
were.

13. Right click and click Direction Field. A direction field should appear.
Do this again, to turn it off.

14. Go to Direction Field on the toolbar. Try turning DirFields on and off
from here. Make sure the popup menu’s dir field checkbox follows
the state of the toolbar menu’s dir field checkbox.

15. With direction fields on, open the direction field menu and try to
change colors, density, length, and arrowheads.

16. With dir fields still on, start playing around with log axes. Make sure
the dir field changes appropriately, and make sure the checkboxes
stay in sync. Make sure scientific notation works. Make sure neither
axis includes anything ≤ 0.

51

17. While still testing the above, try zooming. Make sure tick marks,
both horizontal and vertical, are reasonable, especially making sure
to avoid label overlap. Make sure one cannot cause any kind of over-
flow or underflow errors, and that one cannot zoom too far out or
too far in. There should always be at least three orders of magnitude
between the start of the log axis and the end.

18. Finally, set the vertical log axis on and the horizontal one off, and
make sure the exponential curves now appear linear. They should all
have the same slope. Turn log axes off.

19. Check all of the above (except for direction fields, which should be
off) in multi-graph panel.

20. Look at the curves in the advanced panel. Do the points look reason-
able? Try deleting a curve, and make sure they actually delete.

21. Enter the system of equations

x′ = y
y′ = −x

Plot a few graphs. They should be sine curves.

22. Do all of the above tests in x-t (with the exception of direction fields,
which should be off). Make sure that your old exponential graphs are
still there. Make sure that y-t also works, although extensive testing
should not be as necessary.

23. Check the x-y plot. It should appear like an ellipse (in point of fact it’s
theoretically a circle, but it won’t appear that way unless the viewing
window is square).

24. Try all of the above tests. Direction fields should work here. Solving
forward or backward should both produce ellipses centered at 0.

25. Try to find an equilibrium point. There should be one at (0, 0).

26. Try plotting orbits. This should produce ellipses that pass through
the point you clicked.

27. Do the above tests in multi-plot. Make sure that your old exponential
curves are still there.

52 Testing Procedure

28. Enter the system of equations

x′ = z
z′ = −5 ∗ sin(x)− z

Graph a few solutions, making sure your old x solutions remain on
the x-t graph.

29. Go to z-x, and plot a few solutions forward, and plot a couple of or-
bits.

30. Go to multi-graph, and play around here as well. Make sure that your
old x and y plots are still here.

31. Try printing and exporting.

32. Try saving and loading. When you load a saved file, both input and
output panes should match what was in the saved file.

Appendix D

Developer Tutorial

D.1 Getting Started with Eclipse

Eclipse has been the primary editor used on this project. Here’s how to get
an Eclipse project up to speed quickly. To install Eclipse add-ons, from Help
in the menubar click on Software Updates. Then select Add Site and give
it the appropriate URL. The URL for the packages we use is listed below.
Then select the packages you want and install.

Subclipse
Subclipse is an Eclipse tool which connects an Eclipse workspace to
a subversion repository. To install, you can follow the instructions
above, using a URL:

http://subclipse.tigris.org/update_1.4.x
or alternatively following the instructions at

http://subclipse.tigris.org/install.html
Once you have Subclipse installed, you can begin working by select-
ing

File -> Import -> Checkout Projects from SVN.
The URL should be for the specific branch you want (as the entire
repository is very large). The repository URL for the trunk is (as of
May 2009):

vetinari.math.hmc.edu/svn/odetoolkit/branches/Alpha9

Copyright Wizard
Copyright Wizard is an Eclipse tool that streamlines the process of
adding copyright headers to the source files. To install, use a URL of

54 Developer Tutorial

http://www.wdev91.com/update/. Then the license and header files
can be edited in General->Copyright under File->Preferences. When
all the settings are specified, the license headers can be applied by se-
lecting Project->Apply copyright.... In addition, the license.txt
is generated and included in the project.

Fatjar
Fatjar is a tool to combine various Jar files into a single Jar, and has
been used to combine ODE Toolkit with Castor and other useful Jar
files. To install, use a URL of http://kurucz-grafika.de/fatjar.
To export, select File->Export and select the Fat Jar Exporter. Spec-
ify the Main-Class to be Control.Main, leave One-Jar unchecked, and
uncheck select Manifest file. When selecting files to include in
the Fatjar file, some of the Jar files can be left out to decrease file size.
Any j3d files, as well as vecmath, can be left out if 3D plotting is
unimplemented. swing must be included for the GUI to work, and
xerces and castor-logging are (currently) required for saving and
loading to function properly.

D.2 Main Components

Parsing
The ParserInterface is the interface for compiling strings into func-
tions. Most of the code is created by JavaCC and JJTree and the gram-
mar is stored in grammar.jj. Terminal functions that the parser un-
derstands must be wrapped, and added to the list of known functions
in the ParserInterface.

Solving
Solvers are threads, and solving is a side-effect. When an ODE (an al-
ready parsed equation) is being solved, it gives the solver thread a ref-
erence to a curve, and the points are added as the thread chugs along.
When all the points have been added and the solving is done, the
solver thread then notifies the SolutionReadyListeners, and is done.
The points are already in the ODE at this point, which in turn means
they are already in every PlotState that refers to them.

PlotState
This is the plot. It has the data points, the axes, the options, and is the
model collected into a single place.

Main Components 55

Drawing
Drawer is a static class with no variables, only constants. It is where
drawing takes place. Its public methods take in a graphics object and
the data they are supposed to draw.

Saving/Loading
Saving and loading is done in XML. Currently, we are using some-
thing called Castor XML, which automatically generates code to turn
java objects into XML. This currently resides in Util, and needs cleanup.

UI There are many different components to the user interface, some of
which are panels for no good reason.

ODEWorkspace
is the current interface between the UI and the other modules.

Input
optionsPanel is the class where differential equations and their
initial conditions are entered, as well as where the Solve buttons
reside and where you can access solver options. Solving stuff
gets passed to workspace panel to solve, and parsing stuff gets
passed up to the workspace which call parse. This should get
rerouted to activate Control instead.
Popup Menus and Buttons are input from the user manipulating
the output or its format. These mostly reside in the GraphPanel
(buttons for changing mouse mode, options, etc.) but the func-
tionality which is dependent on interacting with the graph (pan-
ning, zooming) is carried out in PlotPanel. Again, stuff that af-
fects the internal state should be changed to call a Control func-
tion, rather than grabbing it through the PlotPanel.

Output
Graph Panels: These contain both Plot panels, as a way of hold-
ing the output, and various forms of input to manipulate the
plot. Most of the common functionality between different types
has been refactored into a parent class.
Data Panel: This is an output panel that displays solved points
in a data table, called the ‘advanced’ tab in the UI. It does not
contain a Plot Panel.
Plot Panel: This is a dumb panel. Its primary purpose is to hold
the plot. It also can pan, zoom, and figure how mouse clicks
interact with the PlotState.

56 Developer Tutorial

Unfortunately, this is being used for a lot of sending information
to PlotState, which should NOT go through here and instead
should go through Control.

Control
How to think about the flow of the program:

Right now, it mostly works like this: user input is either handled in
place, passed down to the PlotState through a series of wrappers, or
passed up to the ODEWorkspace class to ship out to other modules.
How it should work: User input activates control function, that either
changes the state directly, or activates another module directly.

D.3 Miscellaneous

D.3.1 Java Web Start - Digitally Signing the Jar

In order for Java Web Start to run a program that can access system re-
sources, the program must be digitally signed and trusted by the user. To
sign a Jar file requires keytool and jarsigner. (There’s probably a package
which combines these into Eclipse but we didn’t look for one).

keytool creates keys to allow you to cryptographically sign Jar files.
(Someone should probably look into publishing the public key to a trusted
site.) keytool should be built-in on Macs and Unix-based machines. To
create a key:

keytool -genkey -alias CODEE
where -genkey says that you want to create a key, and -alias asks for the
name that you will call this key— nobody sees this, so it doesn’t really mat-
ter, but we’ll call it CODEE. It will then prompt you for two passwords. The
first password protects all the keys stored in your keystore, and the second
is the one you need to encrypt or sign your message. If you have created
keys before it will prompt you for the key store password. Once generated,
the key will be stored in a file in your root directory called ‘.keystore’. If you
want to save this in another place, use the -keystore URLTOSAVETO option,
and your keys will live at URLTOSAVETO. Creating a key only needs to be
done once, but you need to know both the key password and the key store
password.

Eventually, there should probably be a key in the repository specifically
for this project.

jarsigner allows us to sign the Jar files. First compile a Jar normally
(we’ll pretend it’s called ODETOOLKIT). Then run:

Miscellaneous 57

jarsigner ODETOOLKIT
It will prompt for your key store and key passwords, and then it’s done.
That’s easy enough. Some more options are useful though. If you want to
make the signed Jar file a new copy, then the -signedjar FILENAME option
works:

jarsigner -signedjar ODEToolkitWebStart.jar ODETOOLKIT
Also if the keystore is not in the default place, you can specify it with
-keystore URLOFKEYSTORE.

D.3.2 Javadoc

Javadoc is a tool for generating API documentation in HTML format from
comments in source code. It should be used consistently to document each
class as well as all non-trivial functions (excluding, for example, getters and
setters).

Javadoc syntax can be seen in most classes in the project, and is similar
to block comment syntax (/** ... */). Note that these comments must be
placed directly before the function or class declaration.

To add overview- and package-level documentation, a separate HTML
file must be added in the directory of the package, titled package.html (or
overview.html). See

http://java.sun.com/j2se/javadoc/
for details, and look at existing documentation for examples. For simplic-
ity, please try to consolidate all package documentation into the Javadoc
output.

Compiling Javadoc is simple with Eclipse: with the root directory of the
project selected, select

Project -> Generate Javadoc.
A dialog will allow Javadoc to be generated for different levels of visibility;
for this project, create documentation for members with private visibility.
Selecting Next > allows the documentation title as well as the overview
HTML file to be specified.

Eclipse will create the documentation in the root level of the project in
a directory called Doc. To view at the documentation, start at index.html.

D.3.3 Adding Solvers

A new solver must extend the class Solver and implement methods run() and
kill(). Furthermore, all points, including the initial conditions must be re-
ported through notifyPointReadyListeners(). To evaluate the deriva-

58 Developer Tutorial

tive of the variables, use parserInterface.evaluateODEs(). More de-
tailed instructions can be found in the code repository, in
toolkitNG/toolkitclient/Docs/AddingSolvers.txt.

D.3.4 Managing the ODE Toolkit Website

The ODE Toolkit website is currently hosted at vetinari.math.hmc.edu. In
order to access the server, you will need a math department account; ask
Professor Yong if you need one.

The server does not allow users to connect directly through the ssh
command. Instead, ssh into one of the machines in the math computer
lab (e.g. ssh USERNAME@cain.math.hmc.edu). This can be done through
a command terminal or a graphical frontend for secure file transfer (e.g.
Fugu for Mac OS X).

The actual website files are in /home/bc/odetoolkit-website. If adding
a new version of the program, place it in the downloads directory and up-
date the link in download.html. If adding a new version of the Web Start
program, update the links on both home.html and download.html.

Appendix E

Licensing

The following appears as a header comment in all source files of ODE
Toolkit.

This file is part of ODE Toolkit: a free application that for
solving systems of ordinary differential equations.

Copyright (C) 2002-2009 Eric Doi, Andres Perez, Richard
Mehlinger, Steven Ehrlich, Martin Hunt, George Tucker, Peter
Scherpelz, Aaron Becker, Eric Harley, Chris Moore

This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with this program. If not, see
<http://www.gnu.org/licenses/>.

	Abstract
	Acknowledgments
	Introduction
	Background
	Initial State of ODE Toolkit
	Problem Definition

	Original Architecture
	User Interface
	GUI
	ODEWorkspace
	TabbedGraphPanel
	GraphPanel
	GraphPanel
	ComponentGraphPanel
	PhaseGraphPanel
	MultiGraphPanel
	WorkspacePanel

	PlotPanel
	PlotBox2D
	Plot2D
	MultiPlot2D

	Design Improvements
	Control (Package)
	Main (Class)
	Listeners (Package)
	Data Representation (Package)
	PlotState (Package)
	Axis (Class)
	ODEVar (Class)
	ODEVarVector (Class)

	User Interface (Package)
	TabbedOutputPanel (Class)
	OutputPanel (Class)
	GraphPanel (Class)
	PlotPanel (Class)

	Drawer (Package)

	Testing and Results
	Testing
	Results

	Addition Deliverables
	Documentation
	Developer Tutorials
	Example Library
	Open Source License
	Trac Wiki

	Conclusions and Future Work
	Completing Implementation of Control
	Creating an I/O Package
	Teacher Utilities

	Project Management
	First Semester
	Initial Setbacks
	Initial Optimism

	Second Semester
	Initial Design and Refactoring Attempt
	Design Phase
	Refactoring

	Documentation
	Package Summaries (Old Architecture)
	Parser
	Solver
	Storage (Replaced by DataRepresentation)
	Util
	External Source (Removed by refactoring)

	Package Summaries (New Architecture)
	Control
	DataRepresentation

	Drawer
	UI
	OutputPanels

	Sequence Diagrams
	Class Diagrams

	Testing Procedure
	Developer Tutorial
	Getting Started with Eclipse
	Main Components
	Miscellaneous
	Java Web Start - Digitally Signing the Jar
	Javadoc
	Adding Solvers
	Managing the ODE Toolkit Website

	Licensing

